This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Microstructures of a Hydrogenated Styrene-Butadiene Copolymer by $^{\rm 13}{\rm C}$ NMR

Nikhil K. Singha^{ab}; T. P. Mohandas^a ^a Division of Polymer Chemistry, National Chemical Laboratory, Pune, India ^b DSM Research EP-NP, Geleen, The Netherlands

To cite this Article Singha, Nikhil K. and Mohandas, T. P.(1997) 'Microstructures of a Hydrogenated Styrene-Butadiene Copolymer by ¹³C NMR', Journal of Macromolecular Science, Part A, 34: 11, 2269 — 2278 To link to this Article: DOI: 10.1080/10601329708010046 URL: http://dx.doi.org/10.1080/10601329708010046

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MICROSTRUCTURES OF A HYDROGENATED STYRENE-BUTADIENE COPOLYMER BY ¹³C NMR

Nikhil K. Singha *† and T. P. Mohandas

Division of Polymer Chemistry National Chemical Laboratory Pune 411008, India

ABSTRACT

The microstructure and sequence distribution of a styrene-ethylenebutene-1 copolymer obtained by quantitative hydrogenation of emulsion styrene-butadiene rubber (SBR) was determined using ¹³C NMR. The results show that the polymer has 82% (CH₂)_{>6} units arising due to BBB', SBB and BBB triads (B = hydrogenated 1,4 butadiene, B' = butene-1and S = styrene). The presence of long crystallizable methylene sequences results in a melting endotherm at 45°C for the hydrogenated SBR.

INTRODUCTION

Hydrogenation is a useful chemical method of polymer modification which can lead to polymers with unusual and novel monomer sequences which are otherwise inaccessible or difficult to prepare by conventional polymerization methods. For example, a strictly alternate copolymer of ethylene and propylene can be prepared by hydrogenation of synthetic 1,4 polyisoprene [1] and natural rubber [2]. Hydrogenated chloroprene elastomers (HCR) [3], hydrogenated poly(acrylonitrile-co-butadiene) [4] (HNBR), hydrogenated natural rubber [2] (HNR) and hydro-

[†]Present Address: DSM Research EP-NP, P.O. Box 18, 6160 MD, Geleen, The Netherlands

genated synthetic poly(isoprene) [5] (HIR) have been characterized by NMR. However, the microstructure of a hydrogenated poly(styrene- ∞ -butadiene) (HSBR) has not been examined by ¹³C NMR, which is a very useful tool for determination of microstructure and sequences in copolymers since the chemical shift is sensitive to differences in comonomer and stereochemical sequences [6, 7]. Recently, we have reported the quantitative hydrogenation of emulsion SBR using Ru based catalysts [8]. This prompted us to examine the microstructure of HSBR by ¹³C NMR spectroscopy. Additionally, the sequence structure of HSBR, namely, styrene-ethylene-butene-1 copolymer should reflect the sequence of styrene and butadiene in emulsion SBR, on which only limited information is available.

There have been only a few prior reports on the characterization of the structure of copolymers of styrene and ethylene. Sujuki *et al.* [9] hydrogenated 1,4 poly(2-phenylbutadiene) and characterized the resulting polymer by ¹³C NMR. The presence of three distinct peaks ($S_{\alpha\gamma}$, $S_{\beta\beta}$ and $T_{\delta\delta}$) indicated that the resulting polymer is an alternating copolymer of ethylene and styrene.

 $-CH(Ph)-C_{\alpha\gamma}H_2-C_{\beta\beta}H_2-C_{\alpha\gamma}H_2-CH(Ph)-CH_2-$

Soga et al. [10] copolymerized ethylene and styrene using TiCl₃ and Cp₂Ti(CH₃)₂ and characterized by ¹³C NMR. 1 mol% styrene was incorporated into the copoly-mer. Lu et al. [11] carried out copolymerization of styrene and ethylene using supported TiCl₄/NdCl₃ catalyst which was characterized by ¹³C NMR. and DSC. They distinguished various types of carbon and also determined the sequence distribution in the copolymer containing 47 mol% styrene (Table 1). Kakugo et al. [12] copolymerized ethylene and styrene using (TBP)Ti(OPrⁱ)₂-MAO [15] (TBP = thiobis (4-methyl-6-t-butylphenol) and characterized different types of carbon by ¹³C NMR. Recently, Endo and Otsu [13] studied isomerization of 2-butene followed by the copolymerization with styrene using TiCl₃-TEAL. Ethylene and styrene have also been copolymerized using TiCl₃-MAO [14] and isopropylidene(cyclopentadienyl)(9-fluorenyl)zirconium dichloride-MAO [15] and have been characterized using ¹³C NMR. There are reports of characterization of hydrogenated polybutadiene and ethylene-lbutene copolymers by ¹³C NMR [16]. Since emulsion SBR has appreciable amounts of 1,2 and 1,4 content, the hydrogenated SBR is actually a terpolymer of styrene, ethylene and 1-butene. Details regarding sequence length and microstructural characterization are not available for this kind of polymer.

EXPERIMENTAL

Materials

SBR was hydrogenated using $RuCl_{2}(PPh_{3})_{3}$ according to the procedures described previously [8].

Analysis

¹H NMR of SBR and HSBR were recorded on a 90 MHz Brucker spectrometer and ¹³C NMR. spectra obtained on an MSL 300 model Brucker instrument at 75.5 MHz at room temperature. The spectra were recorded in CDC1₃ under quantitative conditions (45° pulse, pulse delay of 10 seconds). 2500 scans were accummulated to obtain a satisfactory S:N ratio. DSC analysis was performed on a Mettler-20 thermal analyzer.

RESULTS AND DISCUSSION

¹H NMR of SBR (Figure 1) shows that it has 15 mol% 1,2 butadiene content. As the degree of hydrogenation increases the peaks due to protons at $\delta =$ 4.8 to 5.3 slowly disappear indicating the quantitative hydrogenation of SBR (Figure ¹H noise decoupled ¹³C NMR spectrum and the DEPT (distortionless 2). enhancement by polarization transfer) spectrum of SBR and HSBR are shown in Figures 3-6. Figure 3 indicates that SBR contains 12% styrene (13% calculated by ¹H NMR) and 88% butadiene. Also, about 12% butadiene (15% calculated by ¹H NMR) has undergone 1,2 type addition. Methyl, methylene, methine and quarternary carbons in SBR and HSBR have been distinguished by DEPT spectrum (Figure 6). Figure 4 shows that there are four types of carbon in aromatic regions (designated by A, B, C and D in Figure 4) and 11 types of carbons in the aliphatic regions. There are a number of reports on the methods of analysis of monomer sequences and sequence lengths of copolymers of ethylene and propylene and other α -olefins [5]. Randall studied the effect of aromatic substitution on the aliphatic hydrocarbon polymers [17]. Using the method of Grant-Paul [18] and Randall [5, 7, 16, 17] the chemical shifts of different triad sequences have been calculated and are given in Table 1. For the sake of simplicity 1,4, 1,2 and styrene content are designated as B, B' and S, respectively. Chemical shift assignments due to different triads of styrene-ethylene copolymers prepared by various methods are given in Table 1.

2011
January
24
14:01
At:
Downloaded

Table 1: Chemical Shifts (δ) of different triad sequences of HSBR in ¹³C NMR and

							Alternate Copolymers
Carbon		Preser	it Work	Coploy	mer of Styrene	Copolymer of Styrene	of Styrene and
Type				and	Ethylene	and Ethylene [#]	$Ethylene^{@}$
	Peak no.	S	Sequences	vo	Sequences	δ (ppm)	(mqq) õ
	(in Fig 5)	(mqq)		(mqq)			
T ₈₈	1	45.98	BSB, SBS	46.25	ESE	46.00	45.40
T ₈₈	ŝ	38.80	BB'B	1	I	ı	ŗ
$T_{\beta\delta}$	5	43.32	SB'B, BSB', SBB'	43.66	SSE	43.80	ı
$T_{\beta\beta}$	1	ł	ı	41.33	SSS	41.60	1
Saa	3	38.80	SB'B, BSB', SBB'	43.66	SSS	I	1
$S_{\alpha\delta}$	4	36.89	BSB, SBS, SBB	37.18	$(SEE)_{n>1}$	I	ı
$S_{\alpha\delta}$	S	33.17	BB'B, BBB'	1	I	I	ı
$S_{\alpha\gamma}$,	i	ı	36.24	SES	37.00	36.60
Sm	S	33.17	SBS, SBB'	32.05	SEES	I	·

comparison with the literature report of Styrene and Ethylene copolymers

Alternate Copolymers	of Styrene and	Ethylene [@]	(mqq) δ		1	ı	I	ı	1	25.20	I		
	Copolymer of Styrene	and Ethylene [#]	ð (ppm)		1	1	1	1	I	25.70	1		
	mer of Styrene	Ethylene*	Sequences		(SEEE) _{n>1}	(EE) _{n>1}	(SEE) _{n>1}	I			1		NdCl ₃ (Ref. 11)
	Coploy	and	8	(mdd)	30.08	29.95	27.84	1	1	I	ı		I TiCI
	t Work		Sequences		SBB, SBB', BBB'	SBB, BBB', BBB	SBS, SBB'	SBB, BB'B	-CH ₂ - of ethyl group	ı	-CH ₃ of ethyl	branching	merized with supported
	Presen		s	(mqq)	30.08	29.63	27.54	26.68	25.83	1	10.78		re copoly
			Peak no.	(in Fig 5)	6	7	∞	6	10		11		d styrene we
	Carbon	Type			$S_{\gamma\delta}$	S_{88}	$\mathbf{S}_{\beta\delta}$	$S_{\beta \delta^+}$	$2B_2$	$S_{\beta\beta}$	$1B_2$		Ethylene an

Ethylene and styrene were copolymerized with (TBP)Ti(OPri)₂ & MAO system; TBP = thiobis(4-methyl-6-t-butylphenol) (Ref. 12) @ Prepared by the hydrogenation of 1,4 poly(2-phenylbutadiene) (Ref. 9)

Figure 2. ¹H NMR of HSBR

Figure 3. ¹³C NMR of SBR

Figure 5. Amplified region of $\delta = 0 - 50$ ppm of ¹³C NMR of HSBR

Absence of methylene peaks in the region of 42-45 ppm is indicative of absence of SS sequences [17]. This is expected since the mole percent of styrene unit is very low (only 13%). Peaks 1 and 2 in Figure 5 are due to T_{$\delta\delta$} and T_{$\beta\delta$}, respectively, which are according to the literature report. Peak 3 is due to T_{$\delta\delta$} of BB'B and S_{$\alpha\alpha$} of SB'B and BSB' sequences [7]. Absence of peaks at 35.1 (due to T_{$\beta\beta$} of B'B') and at 41.0 (due to S_{$\alpha\alpha$} of B'B'B') indicates that there is no B'B'B'

Figure 6. DEPT spectrum of HSBR

Table 2: Chemi	cal Shifts	of various	5 -CH ₂ -	sequences	of HSBR
----------------	------------	------------	----------------------	-----------	---------

Types of	Chemical Shifts (δ)	Methylene	Integral	Sequence
Carbon	(ppm)	Sequences	Area	Length (%)
$S_{\alpha\alpha}$	38.80	(CH ₂) ₁	1.034	4.8
$S_{\alpha\beta}$	Absent	2(CH ₂) ₂	-	-
$S_{\beta\beta}$	Absent	(CH ₂) ₃	-	-
$S_{\beta\gamma}$	Absent	2(CH ₂) ₄	-	-
$S_{\gamma\gamma}$	33.17	(CH ₂)5	1.529	7.2
$S_{\gamma\delta}$	30.08	2(CH ₂) ₆	2.290	5.6
$S_{\delta\delta}$	29.63	(CH ₂) _{>6}	17.720	82.4

Figure 7. DSC thermogram of HSBR

sequence in HSBR. It is according to our expectation as the mole percent of 1,2 butadiene content in SBR is very low.

The length of $-CH_2$ - can be calculated by using Randall's method [19] (Table 2). The absence of S_{$\alpha\beta$} types of carbons indicates that there is no $(-CH_2-)_2$ which can arise only in case of inverted addition of two styrene units or one styrene and one butadiene unit (1,2 addition) [17]. Absence of peaks S_{$\beta\beta$} and S_{$\beta\gamma$}, indicates the absence of ($-CH_2-$)₃ and ($-CH_2-$)₄ sequence in HSBR. However, sequences such as CH₂, (CH₂)₅, (CH₂)₆ and (CH₂)_{,6} are present. The quantification of these sequence lengths indicates that HSBR has about 82% (CH₂)_{,6} unit. The abundance of (CH₂)_{,6} sequences induce crystallinity in these segments. This has been confirmed by DSC measurement, which shows an endotherm at 450°C (Figure 7). Thus, HSBR has appreciable crystallinity ($\Delta H = 15.2$ J/g). HSBR shows a high intensity S_{$\delta\delta$} peak [(CH₂)_{,6}] which arises due to the presence of SBB, BBB' and BBB.

CONCLUSION

Chemical shifts of various carbons in HSBR have been assigned and the possible sequences identified . HSBR has a considerable amount of crystallinity due to the presence of $(CH_2)_{>6}$ units of about 82%.

ACKNOWLEDGEMENT

The authors are grateful to Dr. S. Sivaram, Deputy Director and Head, Polymer Chemistry Division for his suggestion and inspiration.

REFERENCES

- [1] L. A. Mango and R.W. Lenz, *Makromol Chem.*, 163, 13 (1973).
- [2] N. K. Singha, P. P. De, and S. Sivaram, (Communicated).
- [3] N. K. Singha, S. S. Talwar, and S. Sivaram, Macromolecules, 27, 6985 (1994).
- [4] A. J. Marshall, I. R. Jobe, T. Dee, and C. Taylor, *Rubber Chem. Technol.*, 63, 244 (1989).
- [5] J. C. Randall, J. Macromol. Sci., Chem., C29, 201 (1989).
- [6] F. A. Bovey, *High Resolution AMR of Macromolecules*, Academic Press Inc., New York (1972).
- J. C. Randall, Polymer Sequence Determination by ¹³C NMR Method, Academic Press, New York (1977).
- [8] N. K. Singha and S. Sivaram, Polym. Bull. (Berlin), 35, 121 (1995).
- T. Suzuki, Y. Tsuji, Y. Watanabe, and Y. Takegami, *Macromolecules*, 13, 849 (1980).
- [10] K. Soga, D. Lee and H. Yangihara, Polym. Bull., 20, 237 (1988).
- [11] Z. Lu, K. Liao, and S. Lin, J. Appl. Polym. Sci., 53, 1453 (1994).
- [12] M. Kakugo, T. Tiyatake, and K. Nfizunuma, Stud. Surf. Sci. Catal. (Catalytic Olefin Polymerization) 56, 517 (1990).
- [13] K. Endo and T. Otsu, J. Polym. Sci. Polym. Chem. Ed., 33, 79 (1995).
- [14] R. Mani and C. M. Burns, *Macromolecules*, 24, 5476 (1991).
- [15] J. Ren and G. R. Hatfield, *Macromolecules*, 28, 2588 (1995).
- [16] E. T. Hsieh and J. C. Randall, *Macromolecules*, 15, 353 (1982).
- [17] J. C. Randall, J. Polym. Sci. Polym. Phys. Ed., 13, 889 (1975).
- [18] D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984 (1964).
- [19] J. C. Randall, *Macromolecules*, 11, 33 (1978).

Received October 15, 1996

Revision Received April 20, 1997